

CONSUMER CONFIDENCE REPORT ANNUAL WATER QUALITY REPORT REPORTING YEAR 2020

PWS ID#: TX0610253

Frisco West Water Control & Improvement **District of Denton County**

Office: 972.987.4250 Operator: 214.773.6013

FriscoWest.org

EPA's Safe Drinking Water Hotline

800.426.4791

epa.gov/safewater/lead

Public Participation Opportunities

Date: 3rd Tuesday of each month

Time: 6:30 p.m.

Location: 1230 Brendan Dr, Little Elm, Texas 75068

Phone No: 972.987.4250

To learn about future public meetings (concerning your drinking water), or to request to

schedule one, or for any further information regarding this report, please call us.

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono 972.987.4250.

WHERE YOUR WATER COMES FROM

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturallyoccurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Frisco Hills Water Source - The water is purchased wholesale from the Town of Little Elm. The Town of Little Elm purchases water from North Texas Municipal Water District. The water is drawn from surface water sources including Lake Lavon, Texoma and Cooper.

Frisco Ranch & The Preserve Water Source - Pumps draw water from two ground water wells located in Frisco Ranch. These pumps are roughly 1,000 feet down drawing water from the **Trinity Aquifer**.

WELL #1 WELL #2

Location: 11909 FM423 Location: 1230 Brendan Dr. Type: GW | Activity: A Type: GW | Activity: A Status: Normal Operations Status: Normal Operations

water system are based on this susceptibility and previous State laws, rules, and regulations. sample data. Any detections of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact the Office or Operator.

The TCEQ completed an assessment of your water source and The data collected is from the U.S. Environmental Protection results indicate that some of your sources are susceptible to Agency (EPA) required tests. These tests monitor for certain contaminants. The sampling requirements for your contaminants in your drinking water according to Federal and

> As authorized and approved by the EPA, the State has reduced monitoring requirements for certain contaminants to less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. As a result some of our data is more than one year old.

ALL DRINKING WATER MAY CONTAIN CONTAMINANTS

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

INORGANIC CONTAMINANTS

Inorganic contaminants consist of salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

DISINFECTANTS AND DISINFECTION BY-PRODUCTS

Water is chlorinated for disinfection purposes, aerated to reduce sulfides and treated with ortho-phosphate for corrosion control.

LEAD AND COPPER

Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

MICROBAL CONTAMINANTS

Viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

ORGANIC CHEMICAL CONTAMINANTS

Synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

PESTICIDES AND HERBACIDES

These may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

RADIOACTIVE CONTAMINANTS

Can be naturally-occurring or be the result of oil and gas production and mining activities.

HEALTH RISKS

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

INORGANIC CONTAMINANTS

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	3/19/2020	0.006	0.006 - 0.006	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	3/19/2020	1.61	1.61 - 1.61	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	3/19/2020	1	0.0481 - 0.927	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

LEAD AND COPPER

Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Lead	9/23/2019	15	15	0.001	0	ppb	N	Corrosion of household plumbing systems, erosion of natural deposits
Copper	9/232019	1.3	1.3	0.054	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

DISINFECTANTS AND DISINFECTION BY-PRODUCTS

Water is chlorinated for disinfection purposes, aerated to reduce sulfides and treated with ortho-phosphate for corrosion control. **NOTE:** Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination			
Haloacetic Acids (HAA5)	9/10/2020	20	0 - 19.5	No goal for the total	60	ppb	N	By-product of drinking water disinfection.			
'*The value in the High	nest Level or Aver	rage Detected column is	the highest average of	all HAA5 sample	results co	llected at	a location over	a year'			
Total 9/10/2020 32 2.85 - 32.2 No goal for the total Ppb N By-product of drinking water disinfection.											
'*The value in the High	*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a Year'										

RADIOACTIVE CONTAMINANTS

Can be naturally-occurring or be the result of oil and gas production and mining activities.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	02/12/2018	1.5	1.5 - 1.5	0	5	pCi/L	N	Erosion of natural deposits.

DISINFECTANT RESIDUAL REPORT | CHLORINE

Year	Disinfectant	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
2020	Chlorine	1.02	0.32 - 2.8	4	4	Mg/L	N	Water additive used to control microbes.

SYSTEM SUSCEPTIBILITY SUMMARY | ADDITIONAL CONTAMINANTS

ASBESTOS NA	SYNTHETIC ORGANIC CHEMICALS NA
CYANIDE NA	DISINFECTANT BYPRODUCTS NA
METALS HIGH	VOLATILE ORGANIC CHEMICALS HIGH
"HIGH" susceptibility means there are activities near the source water and the natural conditions of the aquifer or watershed make it very likely that chemical constituents may come into contact with the source water. It does NOT mean that there are any health risks present.	"HIGH" susceptibility means there are activities near the source water and the natural conditions of the aquifer or watershed make it very likely that chemical constituents may come into contact with the source water. It does NOT mean that there are any health risks present.
MICROBIAL NA	DRINKING WATER CONTAMINANT CANIDATE NA
MINERALS NA	OTHER NA
RADIOCHEMICAL NA	

TABLE NOTES

- A. Results in the Level Detected column for radiological contaminants, inorganic contaminants, synthetic organic contaminants including pesticides and herbicides, and volatile organic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency.
- B. For bromate, chloramines, or chlorine, the level detected is the highest running annual average (RAA), computed quarterly of monthly averages of all samples collected. The range of results is the range of results of all the individual samples collected during the p a s t y e a r .

For haloacetic acids or TTHM, the level detected is the highest RAA, computed quarterly of quarterly averages of all samples collected if the system is monitoring quarterly or is the average of all samples taken during the year if the system monitors less frequently than quarterly. Range of results is the range of individual samples (lowest to highest) for all monitoring locations.

DEFINITIONS AND ABBREVIATIONS

The following definitions contain scientific terms and measures, some of which may require explanation.

ACTION LEVEL

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ACTION LEVEL GOAL (ALG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

ΔVG

Regulatory compliance with some MCLs are based on running annual average of monthly samples.

LEVEL 1 ASSESSMENT

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

LEVEL 2 ASSESSMENT

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

MAXIMUM CONTAMINANT LEVEL (MCL)

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MAXIMUM RESIDUAL DISINFECTANT LEVEL (MRDL)

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MAXIMUM RESIDUAL DISINFECTANT LEVEL GOAL (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA

not applicable

MFL

million fibers per liter (a measure of asbestos)

mrem

millirems per year (a measure of radiation absorbed by the body)

NTU

nephelometric turbidity units (a measure of turbidity)

pCi/L

picocuries per liter (a measure of radioactivity)

ppb

micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water

ppm

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water

ppq

parts per quadrillion, or picograms per liter (pg/L)

ppt

parts per trillion, or nanograms per liter (ng/L)

TREATMENT TECHNIQUE (TT)

A required process intended to reduce the level of a contaminant in drinking water.

90th PERCENTILE

The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90 percent of our lead and copper detections.

HELPFUL LINKS AND INFORMATION

WATER QUALITY REPORTS

WATER RESTRICTIONS

COMMUNITY RESOURCE DIRECTORY

FAQ

REPORT AN ISSUE

ADDITIONAL FRISCO HILLS WATER DATA BELOW | Provided by The Town of Little Elm

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2020

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive	Violation	Likely Source of Contamination
0	1 positive monthly sample	Cust#	0	Cust#	Cust#	Naturally present in the environment.
NOTE: Reported monthly tests for	ound no fecal coliform bacteria. Col	iforms are bacteria that are natu	rally present in	the environment and ar	e used as a	n indicator that other,

Regulated Contaminants

				ou conto				
Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2020	CUST#	CUST#	No goal for the total	60	ppb	Cust#	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2020	CUST#	CUST#	No goal for the total	80	ppb	Cust#	By-product of drinking water disinfection.
Bromate	2020	8.91	8.91 - 8.91	5	10	ppb	No	By-product of drinking water ozonation.
IOTE: Not all sample results ma					s may be p	art of an eva	aluation to de	etermine where compliance
ampling should occur in the futu	re. TCEQ only re		annually for compliance testing					
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2020	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2020	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2020	0.061	0.058 - 0.061	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2020	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2020	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2020	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits
Fluoride	2020	0.225	0.218 - 0.225	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2020	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2020	0.827	0.266 - 0.827	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2020	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2020	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.
		r short periods of tir	a health risk for infants of less the me because of rainfall or agricul					
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2018	8.0	8.0 - 8.0	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2018	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2020 (Cont.)

Erosion of natural deposits.

evels lower than

Radium

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2019	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2019	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2020	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2019	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff from herbicide used on row crops.
Aldicarb Sulfone	2019	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb Sulfoxide	2019	Levels lower than detect level	0 - 0	3	4	ppb	No	Runoff from herbicide used on row crops.
Atrazine	2020	0.2	0.2 - 0.2	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2020	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2019	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2020	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2019	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.

	r					ľ		
Di (2-ethylhexyl) adipate	2020	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2020	0.6	0.6 - 0.6	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2019	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2019	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2020	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2019	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2020	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2020	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2020	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2020	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2020	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2020	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2019	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2019	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2019	Levels lower than detect level	0 - 0	4	500	ppb	No	Herbicide runoff.
Simazine	2020	0.08	0.07 - 0.08	4	4	ppb	No	Herbicide runoff.
Toxaphene	2020	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2020	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2020	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2020	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2020	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2020 (Cont.)

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2020	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2020	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2020	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2020	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2020	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2020	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2020	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2020	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2020	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2020	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2020	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Turbidity

	(Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.31 NTU	No	Soil runoff.
Lowest monthly percentage (%) meeting limit	0.3 NTU	100.00%	No	Soil runoff.
NOTE: Turbidity is a measurement of the cloudiness of the water ca	aused by suspended particles. We monitor it bed	cause it is a good indica	tor of water	quality and the effectiveness

Disinfectant Type	Year	Average Level of Quarterly Data		Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2020	Cust#	Cust#	Cust#	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2020	0	0	0	0.80	0.80	ppm	Disinfectant.
Chlorite	2020	0.0475	0	0.483	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level of between 0.5 (ppm) and 4 parts per million (ppm).

Total Organic Carbon

	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Source Water	2020	5.16	3.95 - 5.16	ppm	Naturally present in the environment.
Drinking Water	2020	3.14	2.13 - 3.14	ppm	Naturally present in the environment.
Removal Ratio	2020	53.9	28.4 - 53.9	% removal *	N/A

NOTE: Total organic carbon (TOC) has no health effects. The disinfectant can combine with TOC to form disinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA) which are reported elsewhere in this report.

* Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed.

Cryptosporidium and Giardia

I	Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
I	Cryptosporidium	2020	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.
ı	Giardia	2020	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2020 (Cont.)

Lead and Copper

Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper		15	CUST#	CUST#	ppb		Corrosion of household plumbing systems; erosion of natural deposits.
Lead		1.30	CUST#	CUST#	ppm		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Customer] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2020	CUST #	CUST#	ppb	By-product of drinking water disinfection.
Bromoform	2020	CUST#	CUST#	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2020	CUST #	CUST#	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2020	CUST #	CUST#	ppb	By-product of drinking water disinfection.

NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2020	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Calcium	2020	62.4	58.3 - 62.4	ppm	Abundant naturally occurring element.
Chloride	2020	78.9	23.2 - 78.9	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Iron	2020	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2020	9.40	8.83 - 9.40	ppm	Abundant naturally occurring element.
Manganese	2020	0.017	0.012 - 0.017	ppm	Abundant naturally occurring element.
Nickel	2020	0.0068	0.0066 - 0.0068	ppm	Erosion of natural deposits.
pН	2020	8.60	8.04 - 8.60	units	Measure of corrosivity of water.
Silver	2020	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Sodium	2020	68.5	62.7 - 68.5	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2020	158	42.0 - 158	ppm	Naturally occurring; common industrial by-product; by-product of oil field activity.
Total Alkalinity as CaCO3	2020	107	72.0 - 107	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2020	504	265 - 504	ppm	Total dissolved mineral constituents in water.
Total Hardness as CaCO3	Total Hardness as CaCO3 2020 Zinc 2020 Levels lowe		106 - 207	ppm	Naturally occurring calcium.
Zinc			0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Violations Table

Violation Type	Violation Begin	Violation End	Violation Explanation